If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+0.717x-3=0
a = 4.9; b = 0.717; c = -3;
Δ = b2-4ac
Δ = 0.7172-4·4.9·(-3)
Δ = 59.314089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.717)-\sqrt{59.314089}}{2*4.9}=\frac{-0.717-\sqrt{59.314089}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.717)+\sqrt{59.314089}}{2*4.9}=\frac{-0.717+\sqrt{59.314089}}{9.8} $
| 2-x=-13 | | 4(x+1)–3=4x+1 | | 6(1)-4y=10 | | 55=q+75 | | 3(x+2)–1=3x+1 | | 7v-2v=10 | | 6(x–1)=9(x+2)x=–8 | | -8x+27=10x-9 | | -40=m+3 | | n-21.92=-8.92 | | -10-4y=11+3y | | -10x+5=-85 | | 4+2x=-6+3x | | 2(x+5)=38 | | 5(2)+y=17 | | 19+b=30 | | 0.93*3=b | | 9+7j=6j | | 5x-3=8x-15 | | m+6/3=7 | | 7y+2=-4 | | a2-4a-3=0 | | 2x-2=5x-14 | | 105=8x | | x=4(3)-3 | | 10y-9=4y-3 | | -20+2y-1=3 | | 4=2s+3s | | 0.19+11x=0.15+28x | | 21.82+t=24.00 | | 3x+2(3)=33 | | w+8.9=10.3 |